Ryhall CE Academy Calculation Policy - MULTIPLICATION

Foundation Stage

Key Vocabulary: grouping, doubling, equal
Times Tables: To count in steps of $2 s$ and $10 s$ and begin to count in 5 s .
$\underbrace{\text { Multipilicand Multiplery }}_{\text {Factors }} \int_{\text {Multiple }}^{\text {Product }}$

Objective \& Strategy	Concrete	Pictorial	Abstract
To count in steps of $2 s$ and 10s and begin to count in steps of 5 . (Only ELG children)	Children will count in steps of $2 s$ and 10s. They will begin to count in $5 s$.	Children will verbally say their number sequence aloud to demonstrate their understanding.	
To be able to double numbers.	Using practical activities using manipulative including uni-fix cubes to demonstrate doubling.	Children will begin to draw pictures to demonstrate doubling. Double 1 equals 2.	
To experience equal groups of objects.	Children will experience equal groups of objects. Children will be encouraged to count the groups, then count how many objects are in a group. E.g. $2 \times 4=$	Children will have images of equal groups to solve multiplication sentences by counting how many are in each equal group.	

Ryhall CE Academy Calculation Policy - MULTIPLICATION

Year 1

Key Vocabulary: multiplication, multiply, multiplied by multiple, grouping, doubling, array
Times Tables: Children in Year 1 need to count in steps of 2, 5 and 10.

Objective \& Strategy	Concrete	Pictorial	Abstract
To count in steps of 2,5 and 10s.	Children will be able to use concrete resources to count in steps of 2,5 and 10. Children will use Numicon	Children will verbally say their number sequence aloud to demonstrate their understanding. Children would begin to count aloud and write numbers to match the sequence. E.g. $0,5,10,15,20$...	Children will be able to count aloud in sequences, starting at different points. Children will be able to write sequences with multiples of numbers $\begin{gathered} 2,4,6,8 \ldots \\ 10,20,30,40 \ldots \\ 5,10,15,20,25,30 \ldots \end{gathered}$
To double numbers up to 20.	Children will demonstrate knowledge of doubling through concrete resources. Double 20 equals 40. Double 16 equals 32 Children will use Numicon to show doubling.	Children will be able to use jottings and picture representations to show demonstration of doubling. Children will use the part whole method and bar models to show doubling.	Children will learn to partition a number and then double each part before recombining it back together.

Ryhall CE Academy Calculation Policy - MULTIPLICATION

Ryhall CE Academy Calculation Policy - MULTIPLICATION

| | Use concrete resources and Numicon. | |
| :---: | :---: | :---: | :---: |
| To understand
 multiplication
 as arrays. | Children will create arrays using concrete objects, which
 they then can describe what it represents
 e.g. 2 lots of 5,3 lots of 10 . | Children will draw their own pictorial representations and will have the
 visually provided to show understanding of arrays. |

Ryhall CE Academy Calculation Policy - MULTIPLICATION

Year 2

Key Vocabulary: multiplication, multiply, multiplied by, multiple, grouping, doubling, array, row, column, groups of, times once, twice, three times ... ten times, repeated addition, one each, two each, three each ... ten each, equal groups of, multiplication table, multiplication fact.
Times Tables: children in Year 2 need to count in steps of 2, 3, 5 and 10s.

Objective \& Strategy	Concrete	Pictorial	Abstract
To double numbers up to 100 .	Model using Numicon initially. Model using base 10 to partition a number and then double the ones and the tens. Double 26 is 52	Draw pictures and representations to show how to double numbers. Double 26 is 52	Partition a number and then double each part before recombining back together. Double 26 $\begin{aligned} 20+20 & =40 \\ 6+6 & =12 \end{aligned}$ or
To count in multiples of $2 s, 3 s, 5 s$ and $10 s$ (repeated addition).	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.	Number lines, counting sticks and bar models should be used to show representation of counting in multiples. $6 \times 5=30$	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \end{aligned}$ $0,5,10,15,20,25,30$ $4 \times 3=$ \square

Ryhall CE Academy Calculation Policy - MULTIPLICATION

To show that multiplication is commutative.	Children will create arrays using a variety of concrete resources, including cubes and counters. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer $4 \times 3=12$ $3 \times 4=12$	Children will use a range of pictures to represent arrays to show different calulations and show commuatativity. $4 \times 3=12$ $3 \times 4=12$	Children will write the different multiplication sentences to show the commutative law. $\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Children will also be able to use an array to write multiplication number sentences and reinforce repeated addition. $\begin{array}{ll} 3+3+3+3+3=15 & 5 \times 3=15 \\ 5+5+5=15 & 3 \times 5=15 \end{array}$
To use related multiplication and division facts using the inverse for the $2,3,5$ and 10 times table. This will be taught alongside division to show how the numbers relate and build fluency.	Children will use concrete resources, including cubes to represent arrays. These will then form part of the learning process to explain number related facts and begin to write these in number form. $2 \times 4=8 \quad 4 \times 2=8 \quad 8 \div 2=4 \quad 8 \div 4=2$	Children will use pictorial representations to solve missing number facts that demonstrate related facts.	Children will show all 8 related number sentences to demonstrate related facts. $\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$

Ryhall CE Academy Calculation Policy - MULTIPLICATION

Year 3

Key Vocabulary: multiplication, multiply, multiplied by, multiple, factor, product, grouping, doubling, array, row, column, groups of, times once, twice, three times ... ten times, repeated addition, one each, two each, three each ... ten each, equal groups of, multiplication table, multiplication fact.
Times tables- Children in Year 3 need to be able to confidently count in steps of 2, 3, 4, 5, 8, 10, 50 and 100.

Objective \& Strategy	Concrete	Pictorial
To use related multiplication and division facts using the inverse for the 2, 3, 4, 5,8 and 10 times table.	Children understand the link between multiplication and division and use physical objects to find related facts.	Children represent an array pictorially then find the associated multiplication and division facts by sorting into equal groups.
To begin to use the grid method to solve multiplication problems	Children will be introduced to the grid method by using arrays to demonstrate the links. $12 \times 5=60$ Step 1: Partition the number into tens and ones, e.g. 12 $=10$ and 2 and place the multiplier to the side. Step 2: times the multiplicand by the multiplier. E.g. 10×5 and $2 \times$ 5 and record the answers in base 10 in the boxes. Step 3: Add both answers to find the total for multiplication sentence. E.g. $50+10=60$	Children can represent their work with place value counters or base 10 in a way that they understand. They can draw the counters (using colours to show different amounts or just use the circles in the different columns) or base 10 like shown below. $12 \times 5=60$
To use a formal written method of multiplication (grid method).	Children use partitioning to multiply numbers using the grid method. They partition the multiplicand and multiply each part by the multiplier. Children use base ten and place value counters to represent arrays of the partitioned number.	Children show their understanding by represent the calculation in the grid using their own pictorial representation.

Abstract

Children apply their understanding of inverse relationships to write related multiplication and division statements.

$3 \times 6=18$	$18=3 \times 6$
$6 \times 3=18$	$18=6 \times 3$
$18 \div 3=6$	$6=18 \div 3$
$18 \div 6=3$	$3=18 \div 6$

They use associated vocabulary correctly and know what each number represents in the calculation.

$$
\begin{aligned}
& \begin{array}{c}
\text { mumpoler } \\
3 \times 6=18
\end{array} \\
& \begin{array}{c}
\text { muspicand }
\end{array} \text { product } \\
& 7 \times 18 \div 3=6 \\
& 7
\end{aligned}
$$

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

$12 \times 5=60$		
x	10	2
5	50	10
		$50+10=60$

Formal Method

The children use the grid method for larger numbers. They multiply numbers by first partitioning the multiplicand and then multiplying each part by the multiplier. In year 3 children are expected to multiply 2 -digit by a 1 -digit number.

Ryhall CE Academy Calculation Policy - MULTIPLICATION

Ryhall CE Academy Calculation Policy - MULTIPLICATION

Year 4
Key Vocabulary: multiplication, multiply, multiplied by, multiple, factor, product, grouping, doubling, array, row, column, groups of, times once, twice, three times ... ten times, repeated addition, one each, two each, three each...ten each, equal groups of, multiplication table, multiplication fact, inverse, square, squared, cube, cubed, distributive law.

Times tables- Children in Year 4 need to be able to confidently count in steps of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 .

Ryhall CE Academy Calculation Policy - MULTIPLICATION

Ryhall CE Academy Calculation Policy - MULTIPLICATION

Ryhall CE Academy Calculation Policy - MULTIPLICATION

Year 5
Key Vocabulary: multiplication, multiply, multiplied by, multiple, factor, product, grouping, doubling, array, row, column, groups of, times once, twice, three times ... ten times, repeated addition, one each, two each, three each ... ten each, equal groups of, multiplication table, multiplication fact, inverse, square, squared, cube, cubed, distributive law.

Times tables- Children in Year 5 need to be able to confidently count in steps of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.

Objective \& Strategy	Concrete	Pictorial	Abstract
To recall multiplication and division facts for multiplication tables up to 12×12.	Children continue to deepen their understanding of the link between multiplication and division and use physical objects to find related facts.	Children represent an array pictorially then find the associated multiplication and division facts by sorting into equal groups.	Children apply their understanding of the inverse relationships to write related multiplication and division statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ They use associated vocabulary correctly and know what each number represents in the calculation.
To use a formal written method of multiplication (short multiplication). Up to 4-digit $\times 1$ digit number	Children represent calculations using the place value counters and base ten equipment. They solve in a columnar form and begin by multiplying the ones, then the tens then the hundreds then the thousands before finding the total. $\begin{aligned} & 2741 \times 6=16,446 \\ & 1 \times 6=6 \\ & 40 \times 6=240 \\ & 700 \times 6=4,200 \\ & 2000 \times 6=12,000 \end{aligned}$	Children represent the calculation by drawing pictorial representations. They partition the multiplicandthen multiply each part by the multiplier They understand the place value and can confidently exchange between columns. This leads to the condensed method.	Formal Method In year 5 children are expected to multiply numbers up to a 4-digit by a 1-digit number. The children continue to use the condensed method of short multiplication but with larger numbers. The number is carried underneath between columns.

Ryhall CE Academy Calculation Policy - MULTIPLICATION

Ryhall CE Academy Calculation Policy - MULTIPLICATION
Children represent calculations using the place value counters using the grid method.

$18 \times 13=234$

To use a formal written method of multiplication (long multiplication).
Up to 4-digit $\times 2$ digit number

To use a formal written method of multiplication to multiply number up to 2 decimal places (grid method).

Decimal numbers x 1 digit number

$18 \times 13=234$
Children then solve in a columnar form. They begin by multiplying the ones, then the tens, the hundreds then the thousands before finding the total.

Children represent calculations using the place value counters and base ten equipment. They partition the decimal number and multiply by the multiplier. They then find the total.
$4.9 \times 3=14.7$

Children will first use their knowledge of place value to partition the multiplicand and multiplier. They then show their understand pictorially in a grid method

Children then move towards the columnar
method by
representing each
stage with jottings.
Children are
encouraged to multiply
 the ones first.
$18 \times 13=234$

Children continue to multiply decimal numbers by partitioning the decimal number. They draw pictorial representations and use jottings to find the total
$4.9 \times 3=14.7$

Children will first secure their understanding using the grid method.

$$
18 \times 13=234
$$

X	10	8		
10	100	80		
3	30	24		
100				100
---:				
30				
24				
234				
1				

They will then move on to a more condensed method of long multiplication.
$18 \times 13=234$

Using the grid method, children will be able to multiply decimals with one decimal place by a single digit number They should know that the decimal points line up under each other and place holders are added.

$4.9 \times 3=14.7$

Ryhall CE Academy Calculation Policy - MULTIPLICATION

Year 6
Key Vocabulary: multiplication, multiply, multiplied by, multiple, factor, product, grouping, doubling, array, row, column, groups of, times once, twice, three times ... ten times, repeated addition, one each, two each, three each ... ten each, equal groups of, multiplication table, multiplication fact, inverse, square, squared, cube, cubed.

Times tables-children in Year 4 needs to be able to confidently count in steps of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12

Objective \& Strategy	Concrete	Pictorial	Abstract
To recall multiplication and division facts for multiplication tables up to $12 x$ 12.	Children continue to deepen their understanding of the link between multiplication and division and use physical objects to find related facts.	Children represent an array pictorially then find the associated multiplication and division facts by sorting into equal groups. $18 \div 3=6$ $3 \times 6=18$ $18 \div 6=3$ $6 \times 3=18$	Children apply their understanding of inverse relationships to write related multiplication and division statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ They use associated vocabulary correctly and know what each number represents in the calculation.
To multiply whole numbers and those involving decimals by 10 , 100 and 1,000	Children use resources to understand what 10, 100 and 1000 times bigger looks like. 30 is ten times bigger than 3. 300 is ten times bigger than 30 . 300 is one hundred times bigger than 3. 300	Children use place value grids to multiply numbers by 10,100 and 1000s. They understand the movement of the digits Multiplying left on the place value grid. $123 \times 100=12300$ They apply this knowledge to decimal numbers. $7.9 \times 1000=7900$	Children apply their knowledge of place value to multiply numbers by 10,100 and 1000 , including decimal numbers. $\begin{aligned} & 34 \times 100=3400 \\ & 1234 \times 1000=1234000 \\ & 5.6 \times 10=56 \\ & 12.367 \times 100=1236.7 \end{aligned}$ They apply their knowledge to word and number puzzles.

Ryhall CE Academy Calculation Policy - MULTIPLICATION

To use a formal written method of multiplication to multiply number up to 2 decimal places (grid method).

Decimal numbers $\times 1$ digit number

To use a formal written method of multiplication (short multiplication).

Multi-digit numbers $\times 1$ digit number

Children represent calculations using the place value counters and base ten equipment. They partition the decimal number and multiply by the multiplier. They then find the total.

Children represent calculations using the place value counters and base ten equipment. They solve in a columnar form and begin by multiplying the ones, then the tens then the hundreds then the thousands before finding the total.

Children continue to multiply decimal numbers by partitioning the decimal number. They draw pictorial representations and use jottings to find the total.
$4.92 \times 3=14.76$

Using the grid method, children will be able to multiply decimals with up to two decimal places by a single digit number. They should know that the decimal points line up under each other and zeros are added at place holders.

4.92×3
\mathbf{X}
$\mathbf{4}$
3

Children will move onto using the condensed method.

Formal Method

In year 6 children are expected to multiply multi digit numbers by a 1 -digit number.

The children continue to use the condensed method of short multiplication. The number is carried underneath.

$$
\begin{aligned}
& 342 \times 7 \text { becomes } \\
& \begin{array}{r}
342 \\
\times \quad 37 \\
\hline 2394 \\
\hline 21
\end{array}
\end{aligned}
$$

Children represent the calculation by drawing pictorial representations. They partition the multiplicandthen multiply each part by the multiplier They understand the place value and can confidently exchange between columns. This leads to the condensed method.

Ryhall CE Academy Calculation Policy - MULTIPLICATION

